17,444 research outputs found

    Soft supersymmetry-breaking terms from supergravity and superstring models

    Get PDF
    We review the origin of soft supersymmetry-breaking terms in N=1 supergravity models of particle physics. We first consider general formulae for those terms in general models with a hidden sector breaking supersymmetry at an intermediate energy scale. The results for some simple models are given. We then consider the results obtained in some simple superstring models in which particular assumptions about the origin of supersymmetry breaking are made. These are models in which the seed of supersymmetry breaking is assumed to be originated in the dilaton/moduli sector of the theory.Comment: 24 pages, to appear in the book `Perspectives on Supersymmetry', World Scientific, Editor G. Kane; some comments and references adde

    Automorphisms of moduli spaces of symplectic bundle

    Full text link
    Let X be an irreducible smooth complex projective curve of genus at least 3. Fix a line bundle L on X. Let M_{Sp}(L) be the moduli space of symplectic bundles (E, ExE ---> L) on X, with the symplectic form taking values in L. We show that the automorphism group of M_{Sp}(L) is generated by automorphisms sending E to ExM, where M is a 2-torsion line bundle, and automorphisms induced by automorphisms of X.Comment: 21 page

    Tight-binding study of bilayer graphene Josephson junctions

    Full text link
    Using highly efficient simulations of the tight-binding Bogoliubov-de Gennes model we solved self-consistently for the pair correlation and the Josephson current in a Superconducting-Bilayer graphene-Superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short and long junction regime. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single layer graphene except in the Dirac point where remarkable differences in the proximity effect are found as well as a suppression of the superconducting current in long junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if junction length is larger than the Fermi length

    Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates

    Full text link
    By applying the standard adiabatic approximation and using the accurate analytical expression for the corresponding local chemical potential obtained in our previous work [Phys. Rev. A \textbf{75}, 063610 (2007)] we derive an effective 1D equation that governs the axial dynamics of mean-field cigar-shaped condensates with repulsive interatomic interactions, accounting accurately for the contribution from the transverse degrees of freedom. This equation, which is more simple than previous proposals, is also more accurate. Moreover, it allows treating condensates containing an axisymmetric vortex with no additional cost. Our effective equation also has the correct limit in both the quasi-1D mean-field regime and the Thomas-Fermi regime and permits one to derive fully analytical expressions for ground-state properties such as the chemical potential, axial length, axial density profile, and local sound velocity. These analytical expressions remain valid and accurate in between the above two extreme regimes. Following the same procedure we also derive an effective 2D equation that governs the transverse dynamics of mean-field disk-shaped condensates. This equation, which also has the correct limit in both the quasi-2D and the Thomas-Fermi regime, is again more simple and accurate than previous proposals. We have checked the validity of our equations by numerically solving the full 3D Gross-Pitaevskii equation.Comment: 11 pages, 7 figures; Final version published in Phys. Rev. A; Manuscript put in the archive and submitted to Phys. Rev. A on 17 July 200

    Quadratic Maps in Two Variables on Arbitrary Fields

    Full text link
    Let F\mathbb{F} be a field of characteristic different from 22 and 33, and let VV be a vector space of dimension 22 over F\mathbb{F}. The generic classification of homogeneous quadratic maps f ⁣:V→Vf\colon V\to V under the action of the linear group of VV, is given and efficient computational criteria to recognize equivalence are provided.Comment: 12 pages, no figure
    • 

    corecore